

Te Papa Tipu Innovation Park 49 Sala Street Private Bag 3020 Rotorua New Zealand Telephone: +64 7 343 5899 DDI: +64 7 343 5763 Facsimile: +64 7 343 0952 Email: douglas.gaunt@scionresearch.com

Results

To: Organisation:	Grant Meads	From: Subject:	Doug Gaunt P21:2010 1200mm x 2.4m 12mm MgO SIP with bracket and strap
Location:		Date:	20 June 2018
Fax No.:	021 898586	No. of	5
Tel No.:		Pages:	
	Diagon coll		if transmission in complete

Grant

Please call +64 7 343 5763 if transmission incomplete

Please find below your P21 bracing results for your three 1200mm x 2.40m 12mm MgO SIP walls as tested with a bracket and a strap.

- 1. BU wind = 236 (196 BU/m) as limited by the ultimate load capacity.
- 2. BU Earthquake = 213 (178 BU/m) as limited by the ultimate load capacity.

From the P21 test method, Clause 14.5 - Maximum bracing ratings notes;

"Bracing ratings using this procedure are intended to be constructed in buildings within the scope of NZS 3604. Systems producing high ratings will require resistance to hold down reactions that may not be able to be provided by a typical timber-framed buildings. For this reason, ratings above 110 BU/m for timber floors or 150 BU/m for concrete floors should be published with caution. Refer to NZS 3604"

Figures 1, 2 & 3 show the load deflection plots, Figure 4 shows the P21:2010 calculations.

Wall Construction

- 12mm MgO Board both sides Polystyrene Foam core.
- 90x45mm H1.2 SG8 studs, 90x45mm H1.2 SG8 top & bottom plates
- 2.83 x 64mm Annual Grove Galv gun nails 4 @ 50mm then 150mm centers MgO to studs and plates
- Pryda Bracket one end & 25x0.9mm strap wrapped under plate to stud side fixed with 6 30x2.5 clouts each side stud and 3 30x2.5 clouts each side of bottom plate.
- Double studs at strap end only fixed together with 18 90x3.55 nails.
- M12mm + 50x50x3mm washer to strap end
- M12 to bracket (bracket on outside edge of wall)
- P21 supplementary restraints used

RISK AND LIMITATION OF LIABILITY: Scion's liability to the Client arising out of all claims for any loss or damage resulting from this work will not exceed in aggregate an amount equal to two times the Service Fees actually paid by the Client to Scion. Scion will not be liable in any event for loss of profits or any indirect, consequential or special loss or damage suffered or incurred by the Client as a result of any act or omission of Scion under this Agreement.

USE OF NAME: The Client will not use Scion's name in association with the sale and/or marketing of any goods or services

CAUTION

The information contained in this facsimile is confidential and may be legally privileged. If the reader of this message is not the intended recipient, you are hereby notified that any use, dissemination, distribution or reproduction of this message is prohibited. If you have received this message in error, please notify us immediately and return the message to us by mail. Thank you.

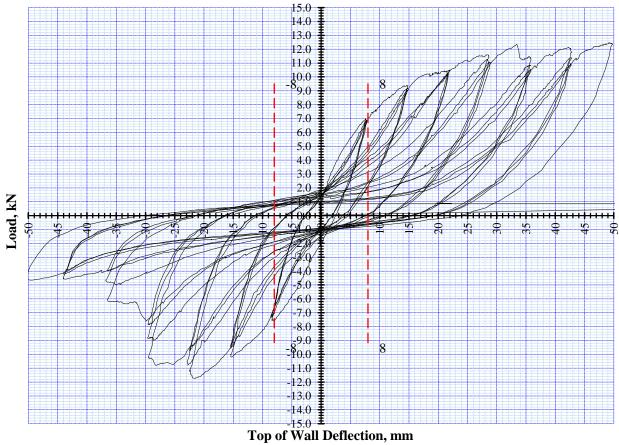


Figure 1: Wall 279238

Observations

• Pryda Bracket screws to stud snapped, then MgO bottom plate tearing off

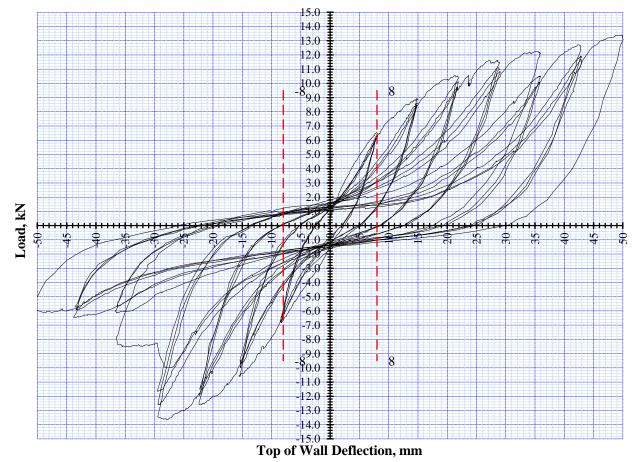


Figure 2: Wall 279239

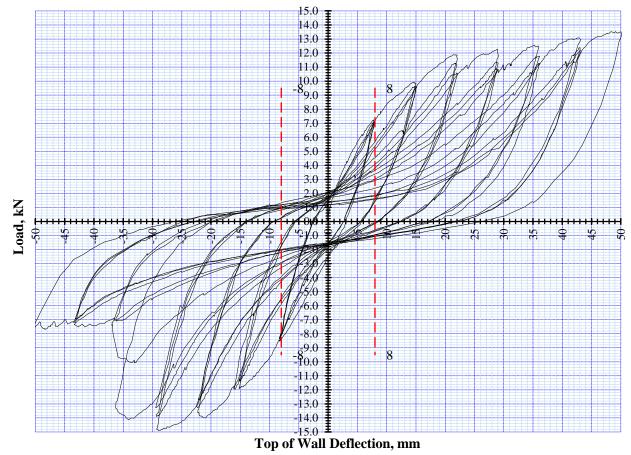


Figure 3: Wall 279240

1200mm, 12mm M	αΟΒ	oard hoth sid	les Polvetvre	ne Foam co	pre			
90x45mm H1.2 SG	•					64mm Δnnu	al Grove	Galv
gun nails 4 @ 50m						Summary		
Pryda Bracket one						Earthquake	178 (U)	BU/m
Double studs (stra							196 (U)	
M12mm + 50x50x3	-				-			20/111
P21 supplementry								
Date of test:-		18-Jun-18	Ship No.	2996		Tested by	Bruce Da	W
Date of calc's:-		19-Jun-18		TE17-035		Analysed by	-	
Calculated to BRANZ					Scion Private	Bag 3020 Rote	-	
		Serviceability		Ultimate Cyc				
		Cycle to H/300 c		Cycle to Dis			Wall dim	ensions
		8.0	Xmm	y=(mm)			L(mm)	H(mm
Lab Number	E	Loads	Residual	Maximum			1200	2400
Labrianisor	ctio	(P ₈)	Defln, C	Load	def @ P		d at P/2	4th,R
	Direction	kN	,	P(kN)		P/2 (kN)		kN
		KIN	mm	г [.] (KIN)	y (mm)	F/∠ (KIN)	d mm	KIN
279238	+	7.00	2.00	10.45	22.0	5.23	4.7	10.40
1.0100	-	7.55	2.80	11.70	22.0	0.20		9.40
279239	+	6.52	2.20	10.40	22.0	5.20	5.7	9.80
1.0100	-	6.60	2.50	12.55	22.0	0.20		11.60
279240	+	7.20	2.80	11.83	22.0	5.92	5.5	10.40
210240	-	8.40	2.70	13.80	22.0	0.02	0.0	12.40
		0.10						
		(P ₈)	(C)	(P)	(y)	P/2 (kN)	(d)	(Ry)
A		(F 8) 7.21			22.00	. ,	. ,	
Averages	ia m 0/		2.50 12.22	11.79		5.45	5.30	10.67
Coefficient of Variat				10.01	0.00	6.08	8.15	9.66
y = average failure c						a the lead)		
d= average first cyc	ie uis							
	D _ D	ooklood S -	- Sonicophilit					
		eak Load, S =		•	Svetor	s factor K2 -	1 2	
Displacement Reco	very F	Factor (K1), (0	.8 <= K1 <=	•	System	is factor K2 =		
Displacement Reco Average Structural [overy F Displa	Factor (K1), (0 Icement Ducti	.8 <= K1 <=	•	System	u = y/d	4.15	
Displacement Reco Average Structural I Ductility Modificatio	overy F Displa on fact	Factor (K1), (0 acement Ducti or	.8 <= K1 <= lity factor	1.0)		u = y/d K4 =	4.15 1.00	
Displacement Reco Average Structural [overy F Displa on fact	Factor (K1), (0 acement Ducti or	.8 <= K1 <= lity factor	1.0)	System	u = y/d K4 =	4.15 1.00	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de	overy F Displa on fact offectio	Factor (K1), (0 acement Ducti or on limit for win	0.8 <= K1 <= lity factor d forces	1.0) DLQ = Selec	cted deflection	u = y/d K4 = limit for earth	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc	overy F Displa on fact offectio	Factor (K1), (0 acement Ducti or In limit for win K1	.8 <= K1 <= lity factor d forces EQ ultimate	1.0) DLQ = Selec EQ service	ted deflection	u = y/d K4 = limit for earth Wind Service	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number	overy F Displa on fact eflectio	Factor (K1), (0 acement Ducti or in limit for win K1 (= 1.4 - C/X)	.8 <= K1 <= lity factor d forces EQ ultimate BU's	1.0) DLQ = Selec EQ service BU's	ted deflection Wind Ultimate BU's	u = y/d K4 = limit for earth Wind Service BU's	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238	very F Displa on fact eflectio	Factor (K1), (0 acement Ducti or In limit for win K1	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0	1.0) DLQ = Selec EQ service BU's 317.5	Wind Ultimate BU's 221.5	u = y/d K4 = limit for earth Wind Service BU's 245.9	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238	very F Displa n fact eflectic :'s (BU) BU/m)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165	1.0) DLQ = Selec EQ service BU's 317.5 265	Wind Ultimate BU's 221.5 185	u = y/d K4 = limit for earth Wind Service BU's	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239	very F Displa on fact eflectio	Factor (K1), (0 acement Ducti or in limit for win K1 (= 1.4 - C/X)	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0	1.0) DLQ = Selec EQ service BU's 317.5	Wind Ultimate BU's 221.5	u = y/d K4 = limit for eartho Wind Service BU's 245.9 205	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239	very F Displa on fact eflectio ' 's (BU) BU/m) (BU)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0	1.0) DLQ = Select EQ service BU's 317.5 265 286.3	Wind Ultimate BU's 221.5 185 229.5	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240	very F Displa on fact eflectio (BU) BU/m) (BU) BU/m)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239	Wind Ultimate BU's 221.5 185 229.5 191	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240	very F Displa in fact eflectic (BU) BU/m) (BU) (BU) (BU)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284	Wind Ultimate BU's 221.5 185 229.5 191 256.3	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240	very F Displa in fact eflectic (BU) BU/m) (BU) (BU) (BU)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240	very F Displa in fact eflectic (BU) BU/m) (BU) (BU) (BU)	Factor (K1), (0 icement Duction on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 0% Ok result	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result -15% Ok result	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result -15% Ok result	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240	very F Displa on fact fflectio ' 's (BU) BU/m) (BU) BU/m) (BU)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 0% Ok result 10% Ok result	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 1% Ok result 11% Ok result	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result -4% Ok result 12% Ok result	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result -15% Ok result 11% Ok result	4.15 1.00 quake forc	es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240 () <20% Result Check	very F Displa on fact effectio (BU) BU/m) (BU) BU/m) (BU) BU/m)	Factor (K1), (0 icement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240 BR Wind or BR I	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 0% Ok result 10% Ok result 20% for any spec	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 1% Ok result 11% Ok result 11% Ok result imen is more th	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result -4% Ok result 12% Ok result an 20% greater t	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result -15% Ok result 11% Ok result 11% Ok result	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240 () <20% Result Check Note: Where the val	very F Displa on fact effectio (BU) BU/m) (BU) BU/m) (BU) BU/m)	Factor (K1), (0 icement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240 BR Wind or BR I	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 0% Ok result 10% Ok result 20% for any spec	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 1% Ok result 11% Ok result 11% Ok result imen is more th	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result -4% Ok result 12% Ok result an 20% greater t	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result -15% Ok result 11% Ok result 11% Ok result	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 () 279240 () <20% Result Check Note: Where the val	very F Displa on fact effectio (BU) BU/m) (BU) BU/m) (BU) BU/m)	Factor (K1), (0 icement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240 BR Wind or BR I cimens, assign i	.8 <= K1 <= lity factor d forces EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 0% Ok result 10% Ok result 20% for any spec	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 1% Ok result 11% Ok result 11% Ok result imen is more th	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result -4% Ok result 12% Ok result an 20% greater t	u = y/d K4 = limit for earth Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result -15% Ok result 11% Ok result 11% Ok result	4.15 1.00 quake forc	:es
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 ((279240 ((<20% Result Check Note: Where the val either of the other tw	very F Displa on fact fflectio 's (BU) BU/m) (BU) BU/m) (BU) BU/m) (BU) bu/m)	Factor (K1), (0 icement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240 BR Wind or BR I cimens, assign i	.8 <= K1 <= lity factor EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 10% Ok result 10% Ok result 20% Ok result 10% Ok result Utimate	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 11% Ok result 11% Ok result imen is more th imes the lower of	Wind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result -4% Ok result 12% Ok result an 20% greater t	u = y/d K4 = limit for eartho Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result 11% Ok result 11% Ok result 11% Ok result Man Serviceabili	4.15 1.00 quake forc	
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 ((279240 ((279240 (() <20% Result Check Note: Where the val either of the other tw Average Earthqua	very F Displa on fact fflectio 's (BU) BU/m) (BU) BU/m) (BU) BU/m) (BU) bu/m)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240 BR Wind or BR I cimens, assign i R 20 x K4 x Ry =	.8 <= K1 <= lity factor EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 10% Ok result 10% Ok result 20% Ok result 10% Ok result Utimate	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 11% Ok result 11% Ok result imen is more th imes the lower of	Vind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result 12% Ok result 12% Ok result an 20% greater t value before aver	u = y/d K4 = limit for eartho Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result 11% Ok result 11% Ok result 11% Ok result Man Serviceabili	4.15 1.00 quake forc	
Displacement Reco Average Structural I Ductility Modificatio DLW = Selected de P21:2010 BR Calc Lab Number 279238 ((279239 ((279240 ((279240 (() <20% Result Check Note: Where the val either of the other tw Average Earthqua	Very F Displation fact on fact fflection 's (BU) BU/m) (BU) BU/m) (BU) BU/m) (BU) bu/m)	Factor (K1), (0 acement Ducti or on limit for win K1 (= 1.4 - C/X) 1.00 1.00 279238 279239 279240 BR Wind or BR I cimens, assign i R 20 x K4 x Ry =	.8 <= K1 <= lity factor EQ ultimate BU's 198.0 165 214.0 178 228.0 190 -12% Ok result 10% Ok result 10% Ok result EQ for any spec t a value of 1.2 t Ultimate 213	1.0) DLQ = Select EQ service BU's 317.5 265 286.3 239 340.4 284 1% Ok result 11% Ok result 11% Ok result imen is more th imes the lower of	Vind Ultimate BU's 221.5 185 229.5 191 256.3 214 -10% Ok result 12% Ok result 12% Ok result an 20% greater t value before aver	u = y/d K4 = limit for eartho Wind Service BU's 245.9 205 221.7 185 263.7 220 1% Ok result 1% Ok result 11% Ok result 11% Ok result 11% Ok result 315	4.15 1.00 quake forc ty it state	

Figure 4: P21:2010 calculations for the 1200mm x 2.4m, 12mm MgO SIP with bracket and strap

Please feel free to contact me to discuss this information.

Doug Gaunt

Cayn 1 10

Q:\Wood-Proc-Prod\TimbEng\2017 - 2018 year\TE17-035b Grant Meads 1200 MgO SIP B.docx Page 5 of 5 20 June 2018